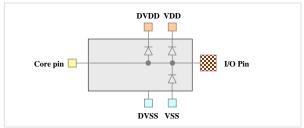
GF28: RF

Libraries

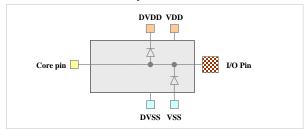
Name	Process Form Factor
RGO_GF28_18V33_SLP_20C_R	F SLP Staggered
RGO GF28 18V33 HPP 20C R	HPP Staggered


Includes

- Analog / RF cells
 - o Low voltage LNA input pad (1.5V)
 - o High voltage LNA input pad (3.3V)
 - PA output pad, 5V tolerant
 - 10GHz analog (thick gate) signal pad with multiple input resistance options, 5V tolerant
- Discrete ESD protection components
 - o RF diodes
 - o SCR's

Analog / RF Pads

ANP IN LAN 10V


ANP_IN_LNA_10V is a 0 to 1.5V analog I/O pad optimized for low capacitance. This is designed to protect thin gate oxide input devices. The layout uses wide metal 3 interconnect (14 $\mu m)$ for low inductance from the bond pad to the core.

Pin capacitance: 790 fF (SLP process), 843 fF (HPP process)

ANP IN LNA 33V

ANP_IN_LNA_33V is a 0 to 3.3V analog I/O pad optimized for low capacitance. The layout uses wide metal 3 interconnect (12 $\mu m)$ for low inductance from the bond pad to the core.

Pin capacitance: 660 fF (SLP process), 673 fF (HPP process)

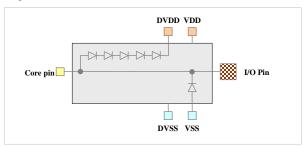
ESD Protection

I/O pads are designed with robust ESD protection for all market segments. Passed:

- 2KV ESD Human Body Model (HBM)
- 200 V ESD Machine Model (MM)
- 500 V ESD Charge Device Model (CDM)

RF Diodes

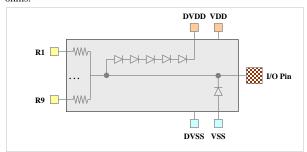
The set of PPLUS_NWELL_DIODE_x RF diodes are selected to provide minimum capacitance for RF applications and high current handling capability for good ESD protection.


Silicon-Controlled Rectifiers (SCR)

The set of P+ to Nwell SCR discrete components are selected to provide the lowest capacitance with the highest ESD protection. These components have been used in I/O pads to demonstrate over 6KV ESD protection.

ANP_OU_PWA_5T

ANP_OU_PWA_5T is an analog I/O pad optimized for low capacitance which uses SCRs for ESD clamp devices.


The stacked diode ESD structure from DVDD to the I/O pin provides extended overvoltage protection. With a 3.3V power supply, this I/O pad is 5V tolerant. Dropping to an I/O domain power supply of 1.8V, the pad is 3.3V tolerant.

Pin capacitance: 692 fF (SLP process), 702 fF (HPP process)

ANP BI DWR 5T

ANP_BI_DWR_5T is a bi-directional analog signal pad with selectable input resistance. Resistors R1 to R4 and R6 to R9 can be used in parallel to achieve the desired resistance value as low as 1.3 ohms.

This structure can then be used with output amplifiers for which R5 can be used in the feedback path. If used in this manner, R1 to R4 and R6 to R9 should be individually connected to isolated fingers of the driver transistors.

GF28: RF

Recommended operating conditions

Symbo	ol Description	Min	Nom	Max	Units
V _{VDD}	Core supply voltage	SLP	0.90	1.0	1.10
			0.99	1.1	1.155
		HPP	0.765	0.85	0.935
			0.81	0.9	0.945
V _{DVDD}	I/O supply voltage	1.62	3.3	1.98	V
		2.70	3.0	3.30	V
		2.52	2.8	3.08	V
		2.25	2.5	2.75	V
		1.62	1.8	1.98	V
TJ	Junction temperature	-40	25	125	°C
V_{PAD}	Voltage at PAD	-0.3V		V _{DVDD} +0.3V	V

Characterization Corners

Nominal VDD	Model	VDD	DVDD [1]	Temperature
1.1 (SLP)	FF	+5%	+10%	-40°C
	FF	+5%	+10%	125°C
	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C
1.0 (SLP)	FF	+10%	+10%	-40°C
	FF	+10%	+10%	125°C
	TT	nominal	nominal	25°C
	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C
	FF	+5%	+10%	-40°C
	FF	+5%	+10%	125°C
0.9 (HPP)	TT	nominal	nominal	25°C
(HFF)	SS	-10%	-10%	-40°C
	SS	-10%	-10%	125°C
	FF	+10%	+10%	-40°C
2.25	FF	+10%	+10%	125°C
0.85 (HPP)	TT	nominal	nominal	25°C
(LIFF)	SS	-10%	-10%	-40°C
·	SS	-10%	-10%	125°C

^[1] DVDD = 3.0V / 3.3V

© 2010-2019 Aragio Solutions. All rights reserved.

Information in this document is subject to change without notice. Aragio Solutions may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Aragio, the furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property.

Published by:

Aragio Solutions
2201 K Avenue
Section B Suite 200
Plano, TX 75074-5918
Phone: (972) 516-0999
Fax: (972) 516-0998
Web: http://www.aragio.com/

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Printed in the United States of America